Datenblatt | Data sheet

Data sheet Dimensional shape accuracy and roughness DIN 5402-1:2014-05

Cylindrical rollers

Güteklasse (Grade)	D_{w} mm		$V_{d w p}{ }^{a}$ $\mu \mathrm{m}$ max.	$\begin{gathered} \Delta_{R \mathrm{w}}{ }^{\mathrm{a}} \\ \mu \mathrm{~m} \\ \mathrm{max} . \\ \hline \end{gathered}$	$\begin{aligned} & V_{D w m p}^{b} \\ & \mu \mathrm{~m} \\ & \text { max. } \end{aligned}$	$V_{D \mathrm{wL}}{ }^{\mathrm{a}, \mathrm{c}}$ $\mu \mathrm{m}$ max.	$\begin{gathered} V_{d \mathrm{wB}}^{\mathrm{a}} \\ \mu \mathrm{~m} \\ \\ \text { max. } \end{gathered}$	$\begin{gathered} S_{T} \\ \mu \mathrm{~m} \end{gathered}$	$\begin{gathered} I_{G D w^{c}} \\ \mu \mathrm{~m} \end{gathered}$	Sortenbereich Mittlere Abmaße ${ }^{a}$ $\mu \mathrm{m}$			$R a$ Mantelfläche $\mu \mathrm{m}$ max.
G2 ${ }^{\text {d }}$	-	26	0,8	1	0,8	2	-	-	1	-8 bis -1	0	+1 bis +6	0,16
	26	40	1,2	1,2	1,2	3	-	-	1,5	-9 bis $-1,5$	0	+1,5 bis +6	0,2
	40	75	2	2	2	(3)	3	1	$1(1,5)$	-16 bis -1	0	+1 bis +16	0,32
	75	120	2,5	2,5	2,5	(5)	5	1,5	1,5 (2,5)	-18 bis $-1,5$	0	$+1,5$ bis +18	0,32
G1 ${ }^{\text {e }}$	-	26	0,5	0,5	0,5	1,5	-	-	1	-8 bis -1	0	+1 bis +6	0,1
	26	40	1	0,8	1,2	2	-	-	1,5	-9 bis -1,5	0	+1,5 bis +6	0,16
	40	75	1,5	1,2	1,5	(3)	3	1	$1(1,5)$	-16 bis -1	0	+1 bis +16	0,25

a The values apply in the center of the cylindrical roller.
Measured in two radial planes in the cylindrical center section symmetrical to the roll center.
he values in brackets are permissible if rigid sorting according to $A .3$ is used for rolls with D_{T} above 40 mm .
GN is not specified in the designation - G2
For grade $G 1$ with D_{w} up to 26 mm , the grade classification can also be made with the half grade interval values $I_{G D w}$.
Nominal diameter of the roller D_{w}
Zur allgemeinen Bezeichnung eines Rollendurchmessers verwendeter Durchmesserwert

Nominal length of the roller L_{w}

Length value used for the general designation of a roller length

Sorting

Distance of the mean roll diameter or the mean roll length of a cylindrical roll from the nominal dimension, rounded to a multiple of the grade interval
Single roller diameter $D_{w s}$
Distance between two planes parallel to the roll axis which are in contact with the roll shell
Mean diameter in a radial plane $D_{\text {wmp }}$
Arithmetic mean of largest and smallest single diameter $D_{w s}$ in a radial plane
Mittlerer Rollendurchmesser einer Durchmessersorte $D_{w m L}$
Arithmetic mean of the largest and smallest mean roll diameter $D_{w m p}$ in a diameter grade
Variation of the roll diameter in one plane $V_{\text {Dwp }}$
Difference between the largest and smallest single roll diameter $D_{w s}$ in a radial plane

Variation of roll diameter in two radial planes $\mathrm{V}_{\text {Dwmp }}$
Difference between mean roll diameters $D_{\text {wmp }}$ measured in two radial planes in the cylindrical central part of the rolls, symmetrical to the roll center

Variation of mean roll diameters in a variety or variety subset $\mathrm{V}_{\text {DwL }} \mathrm{V}_{\mathrm{DwB}}$
Difference between the largest and smallest mean roll diameter, for $V_{D w L}$ within a variety, for $V_{D w B}$ within a variety subset.

Roundness $\Delta \mathrm{R}_{\mathrm{w}}$
Largest radial distance between the cylindrical roller surface and a concentrically arranged circumscribing circle, measured in the center of the cylindrical roller.

Datenblatt | Data sheet

Grade interval roller diameter IGow
Value into which the permissible dimension of the nominal diameter of the roll is evenly subdivided.
Sort interval of roller length $\operatorname{IG} L_{w}$
Value into which the permissible dimension of the nominal length of the roll is evenly divided.

Variation of roll lengths in a grade or grade subset $\mathrm{V}_{\mathrm{LwL}}, \mathrm{V}_{\mathrm{LwB}}$
Difference between the largest and smallest average roll length, for $\mathrm{V}_{\mathrm{LwL}}$ within a grade, for $\mathrm{V}_{\mathrm{LwB}}$ within a grade subset

Axial runout related to roller axis S_{Dw}

Difference between largest and smallest axial distance between the roll face and a plane perpendicular to the roll axis, measured in the roll center, and a certain radial distance from the roll axis during one complete revolution of the roll.

Sort tolerance S_{T}

Bereich, in dem sich die Mitte von $\mathrm{V}_{\mathrm{DwB}}$ bzw. $\mathrm{V}_{\mathrm{LwB}}$ innerhalb einer Sorte bewegen darf
Range in which the center of $\mathrm{V}_{\mathrm{DwB}}$ or $\mathrm{V}_{\mathrm{LwB}}$ is allowed to move within a grade
Radial edge distance r_{1}
Distance measured in an axial plane between the imaginary sharp edge of a roller and the intersection line between the surface of the edge rounding and the face of the roller

Axial edge distance r_{2}
Distance measured in an axial plane between the imaginary sharp edge of a roller and the intersection line between the surface of the edge rounding and the shell surface of the roller

Single radial edge distance ${ }_{1 s}$

Distance measured in a single axial plane between the imaginary sharp edge of a roller and the intersection line between the surface of the edge rounding and the end face of the roller

Single axial edge distance $r_{2 s}$
Distance measured in a single axial plane between the imaginary sharp edge of a roller and the intersection line between the surface of the edge rounding and the shell surface of the roller

Largest single radial edge distance $\mathrm{r}_{1 \mathrm{~s} \text { max }}$
Largest permissible single radial edge distance of a roller

Smallest single axial edge distance $r_{2 s \text { min }}$
Smallest permissible single axial edge distance of a roll

Largest single axial edge distance $r_{2 s \text { max }}$
Largest permissible single axial edge distance of a roller

Surface roughness Ra

Deviations from a geometrically perfect surface, whereby deviations in shape and waviness are not taken into account.

