Datenblatt | Data sheet

Data sheet Dimensional shape accuracy and roughness DIN 5402-1:2014-05

Cylindrical rollers

Güteklasse (Grade)	D _w mm über bis		V _{dwp} ª μm max.	Δ _{Rw} ^a μm max.	V _{Dwmp} b μm max.	V _{DwL} ^{a,c} μm max.	V _{dwB} ª μm max.	S _τ μm	l _{GDw} c μm	Sortenbereich Mittlere Abmaße ^a µm		<i>Ra</i> Mantel- fläche μm max.	
G2ª	-	26	0,8	1	0,8	2	-	-	1	-8 bis -1	0	+1 bis +6	0,16
	26	40	1,2	1,2	1,2	3	-	-	1,5	−9 bis −1,5	0	+1,5 bis +6	0,2
	40	75	2	2	2	(3)	3	1	1 (1,5)	-16 bis -1	0	+1 bis +16	0,32
	75	120	2,5	2,5	2,5	(5)	5	1,5	1,5 (2,5)	−18 bis −1,5	0	+1,5 bis +18	0,32
G1 ^e	-	26	0,5	0,5	0,5	1,5	-	-	1	-8 bis -1	0	+1 bis +6	0,1
	26	40	1	0,8	1,2	2	-	-	1,5	−9 bis −1,5	0	+1,5 bis +6	0,16
	40	75	1,5	1,2	1,5	(3)	3	1	1 (1,5)	-16 bis -1	0	+1 bis +16	0,25

^a The values apply in the center of the cylindrical roller.

^b Measured in two radial planes in the cylindrical center section symmetrical to the roll center.

^c he values in brackets are permissible if rigid sorting according to A.3 is used for rolls with D_T above 40 mm.

d GN is not specified in the designation - G2

e For grade G1 with Dw up to 26 mm, the grade classification can also be made with the half grade interval values IGDW-

Nominal diameter of the roller D_w

Zur allgemeinen Bezeichnung eines Rollendurchmessers verwendeter Durchmesserwert

Nominal length of the roller $L_{\!w}$

Length value used for the general designation of a roller length

Sorting

Distance of the mean roll diameter or the mean roll length of a cylindrical roll from the nominal dimension, rounded to a multiple of the grade interval

Single roller diameter D_{ws}

Distance between two planes parallel to the roll axis which are in contact with the roll shell

Mean diameter in a radial plane Dwmp

Arithmetic mean of largest and smallest single diameter D_{ws} in a radial plane

Mittlerer Rollendurchmesser einer Durchmessersorte D_{wmL}

Arithmetic mean of the largest and smallest mean roll diameter D_{wmp} in a diameter grade

Variation of the roll diameter in one plane V_{Dwp}

Difference between the largest and smallest single roll diameter D_{ws} in a radial plane

Variation of roll diameter in two radial planes V_{Dwmp}

Difference between mean roll diameters D_{wmp} measured in two radial planes in the cylindrical central part of the rolls, symmetrical to the roll center

Variation of mean roll diameters in a variety or variety subset $V_{\text{DwL}},\,V_{\text{DwB}}$

Difference between the largest and smallest mean roll diameter, for V_{DwL} within a variety, for V_{DwB} within a variety subset.

Roundness ΔR_w

Largest radial distance between the cylindrical roller surface and a concentrically arranged circumscribing circle, measured in the center of the cylindrical roller.

This data sheet is for your information only and does not represent a contractually binding document. All the values indicated are standard values and may vary depending on the variety or manufacturer.

Datenblatt | Data sheet

Grade interval roller diameter I_{GDw}

Value into which the permissible dimension of the nominal diameter of the roll is evenly subdivided.

Sort interval of roller length IGL_w

Value into which the permissible dimension of the nominal length of the roll is evenly divided.

Variation of roll lengths in a grade or grade subset $V_{LwL},\,V_{LwB}$

Difference between the largest and smallest average roll length, for V_{LwL} within a grade, for V_{LwB} within a grade subset

Axial runout related to roller axis S_{Dv}

Difference between largest and smallest axial distance between the roll face and a plane perpendicular to the roll axis, measured in the roll center, and a certain radial distance from the roll axis during one complete revolution of the roll.

Sort tolerance ST

Bereich, in dem sich die Mitte von V_{DwB} bzw. V_{LwB} innerhalb einer Sorte bewegen darf Range in which the center of V_{DwB} or V_{LwB} is allowed to move within a grade

Radial edge distance r₁

Distance measured in an axial plane between the imaginary sharp edge of a roller and the intersection line between the surface of the edge rounding and the face of the roller

Axial edge distance r₂

Distance measured in an axial plane between the imaginary sharp edge of a roller and the intersection line between the surface of the edge rounding and the shell surface of the roller

Single radial edge distance_{1s}

Distance measured in a single axial plane between the imaginary sharp edge of a roller and the intersection line between the surface of the edge rounding and the end face of the roller

Single axial edge distance r_{2s}

Distance measured in a single axial plane between the imaginary sharp edge of a roller and the intersection line between the surface of the edge rounding and the shell surface of the roller

Largest single radial edge distance r_{1s max}

Largest permissible single radial edge distance of a roller

Smallest single axial edge distance $r_{2s\,\text{min}}$

Smallest permissible single axial edge distance of a roll

Largest single axial edge distance $r_{2s max}$

Largest permissible single axial edge distance of a roller

Surface roughness Ra

Deviations from a geometrically perfect surface, whereby deviations in shape and waviness are not taken into account.

